Clinical trials using cord blood and cord tissue cells in children with cerebral palsy, autism and related conditions

- Joanne Kurtzberg
- Marcus Center for Cellular Cures
- Duke University Medical Center
- September 19, 2019
Types of Cells in Cord Blood

- Multipotent hematopoietic stem cell (Hemocytoblast)
 - Common myeloid progenitor
 - Erythrocyte
 - Mast cell
 - Myeloblast
 - Megakaryocyte
 - Thrombocytes
 - Common lymphoid progenitor
 - Small lymphocyte
 - Natural killer cell (Large granular lymphocyte)
 - B lymphocyte
 - T lymphocyte
 - Macrophage
 - Monocyte
 - Plasma cell

- CD14
 - Hypoxic Injury
- DUOC-01
 - Remyelination
Innovative Cord Blood Therapies at Duke (All under IND with the FDA)

HSCT
- Children with IMD
- DUOC as a bridging therapy to accelerate CNS engraftment in children with IMD
- Requires myeloablative conditioning

Infusion therapy
- Cord Blood
 - HIE
 - CP
 - ASD
 - Acute Stroke in adults
 - EAP
- HCT-MSCs
 - HIE
 - CP
 - ASD
 - OA knee in adults
- Direct Infusion, no conditioning
Cord Blood Monocytes and hCT-MSCs: How are the cells working?

• Paracrine signaling
• Trophic effects

• Cross talk with endogenous cells resulting in:

 ✓ Modulation of neuroinflammation
 • Suppression of microglial activation
 • Suppression of activated lymphocytes

 ✓ Promotion of remyelination
Effects of CB CD14+ monocytes on OGD in brain slice cultures

72h Control- No OGD

72-hr post OGD

72h post OGD CB CD14 (+)

GFAP, NeuN, Iba1
MSCs Inhibit Microglial Activation after Chemical Induced Demyelination
Autism Spectrum Disorder

• Difficulties forming relationships and communicating
• 1 in 59 children in US affected
• Annual cost to society - $265 billion
• No FDA-approved medicines that improve core symptoms of autism
25 children with ASD
Ages 2-6, 80% males
Non-verbal IQ 35-123 (median 64)
Assess endpoints at 6 and 12 months
Assess feasibility and safety
Excluded children with genetic causes of autism
Improvements in social behavior

Primary endpoint: Vineland Adaptive Behavior Scale – Socialization Standard Score

- Significant increase in socialization standard score (p = 0.02)
- Children with higher baseline IQ had greater response
- No safety concerns
- Primary endpoint for ongoing Phase II randomized, placebo controlled trial comparing autologous versus allogeneic cord blood to placebo.
 - 178 patients
 - Results Oct 2018
Eye tracking

- During dyadic bid condition, there was a 20% increase in odds of gazing at actress’ eyes from baseline to 12 months ($p = 0.048$).
- Proportion of time child spent looking at the actress increased but was not statistically significant.
- 7-point change in VABS-II socialization standard score was associated with a 14% increase in odds of gazing at the actress ($p < 0.001$).
DukeACT Trial Design

Evaluation

Randomize

N = 60

Infusion 1

Placebo

Best Donor Source

Auto

Allo

Infusion 2

Best Donor Source

Placebo

Auto

Allo

Baseline

6 months
Phase 1 hCT-MSC in Children with ASD

Cohort 1
N=3
MSCs

Cohort 2
N=3
MSCs

Cohort 3
N=6
MSCs

Infusion
Infusion
Infusion

Evaluate in person
Evaluate remotely

F/U
F/U

F/U
F/U

F/U
F/U

Baseline
2 mos
4 mos
6 mos
12 mos from final dose
Phase 1 MSC study – 6 month data

<table>
<thead>
<tr>
<th>ID</th>
<th>Dose</th>
<th>Sex</th>
<th>IQ</th>
<th>VABS*</th>
<th>PDDBI</th>
<th>CGI</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>M</td>
<td>62</td>
<td>-2</td>
<td>-</td>
<td>Min</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>M</td>
<td>68</td>
<td>4</td>
<td>6</td>
<td>Min</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>M</td>
<td>45</td>
<td>22</td>
<td>-22</td>
<td>Min</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>F</td>
<td>59</td>
<td>0</td>
<td>-6</td>
<td>Much</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>M</td>
<td>40</td>
<td>-10</td>
<td>-1</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>M</td>
<td>36</td>
<td>8</td>
<td>-22</td>
<td>Min</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>M</td>
<td>42</td>
<td>-2</td>
<td>0</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>M</td>
<td>54</td>
<td>-8</td>
<td>-4</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>M</td>
<td>71</td>
<td>-3</td>
<td>6</td>
<td>Min</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>M</td>
<td>82</td>
<td>19</td>
<td>-20</td>
<td>Min</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>F</td>
<td>59</td>
<td>4</td>
<td>-7</td>
<td>Min</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>F</td>
<td>95</td>
<td>7</td>
<td>-2</td>
<td>Min</td>
<td>3</td>
</tr>
</tbody>
</table>

• 58% of patients (7/12) showed improvement on at least 2/3 measures.
 o 42% (5/12) showed improvement on 3/3 measures.
 o 16% (2/12) showed improvement on 2/3 measures.
 o No clear dose effect, although there are too few patients to determine this definitively.

* Clinically significant improvement ≥ 3 points.
Phase 2 MSC study in ASD: IMPACT

- **Baseline**: Placebo
- **3 mos**: MSCs 6M / Kg
- **6 mos**: Placebo

Infusion
- In person evaluation
- Remote evaluation

N = 82 - 150
63 patients, ages 1-6 years
Qualified autologous CBU – 16 banks
CP with spasticity, GMFCS Levels I-IV
Placebo TC199 + 1% DMSO
Primary Endpoint: Change in GMFM score at 1 year
Assessing Change in Changing Subjects

![Graph showing GMFM-66 Score vs Age for different levels of GMFCS (Gross Motor Function Classification System).]

- Level I
- Level II
- Level III
- Level IV
- Level V

GMFCS Level I
GMFCS Level II
GMFCS Level III
GMFCS Level IV
GMFCS Level V

JAMA. 2002;288:1357-1363
N = 38 with analyzable images
Increases in motor function at 1 year that were 30% higher than predicted for age and level of function were scored a response to cord blood cells.
Expanded Access Protocol

• In SEP 2017 we opened an Expanded Access Protocol (EAP) under IND for IV infusion of autologous or sibling umbilical cord blood for children with brain injuries, including:
 o Autism
 o Cerebral Palsy
 o Congenital Hydrocephalus
 o Apraxia
 o Stroke
 o Hypoxic Brain Injury

• Assessing safety up to 12 months post infusion
• 320+ patients treated to date
• Waiting list of thousands of patients
Conclusions

▪ CB, both autologous and allogeneic, show excellent safety profiles and suggestions of efficacy in Phase I and Phase II clinical trials in children with brain injury.

▪ The CB monocytes appear to be the active cells in this heterogeneous cell product.

▪ Additional, well designed Phase III studies, will be required to confirm efficacy and to obtain regulatory approvals.

▪ These therapies have the potential to treat diseases with unmet needs and to change human lives.
Acknowledgements – Duke Team

• Patients & Families

• The Marcus Center for Cellular Cures (MC³)
 • Joanne Kurtzberg MD
 • Geraldine Dawson PhD
 • Jesse Troy PhD
 • Amanda Parrish PhD
 • Jennifer Baker
 • Andrew Balber PhD
 • Anthony Filiano PhD
 • Arjun Saha PhD
 • Paula Scotland, PhD
 • Pamela Noldner
 • Norin Meadows
 • Amber Littesy
 • Ann Kaestner, MT

• Cord Blood Banks

• Funding Support
 • The Marcus Foundation
 • The Robertson Foundation
 • The Dana Foundation
 • Cure CP
 • Perkin Elmer

DUOC, CP, & ASD Study Teams
 • Joanne Kurtzberg MD
 • Geraldine Dawson PhD
 • Jessica Sun MD
 • Kristin Page MD
 • Vinod Prasad MD
 • Jesse Troy PhD
 • Mohamad Mikati MD
 • Gordon Worley MD
 • Allen Song PhD
 • Joan Jasien MD
 • Katie Gustafson PhD
 • Laura Case DPT
 • Julie Coats PT
 • Colleen McLaughlin CPNP
 • Tara West PNP
 • Rachel Hollowell PNP
 • Natalie Skergen PNP
 • Jayne Cash RN
 • Kerry Hoyle RN
 • Sydney Crane RN
 • Barbara Waters-Pick, MT
 • The EMMES Corporation & RTI

“It takes a Village”

• Duke STCL
• Carolinas Cord Blood Bank
• Robertson GMP Manufacturing Lab