The Alliance for Cell Therapy Now, a 501(c)6 organization devoted to advancing the availability of safe and effective cell therapies for patients in need, hosted a briefing in the Senate Hart Office Building on Capitol Hill on September 19, 2019, in collaboration with the Regenerative Medicine Foundation and the Cord Blood Association.

During the event, public and private sector leaders described the promise of regenerative cell therapies, as well as key imperatives for bringing both safe and effective treatments to patients in need. Key take-aways from the event are summarized below:

• Regenerative cell therapies represent the next generation of treatments that are showing great promise for patients in need. Several well-designed clinical trials are being conducted under Food and Drug Administration (FDA) approved investigational new drug (IND) protocols.

• At the same time, some clinics have caused patient harm or made questionable claims, taking advantage of vulnerable patients and casting a negative light on this promising field.

• The 21st Century Cures Act contained several provisions to make safe and effective regenerative cellular therapies available to patients. The FDA and the National Institutes of Health (NIH) are taking several steps to advance and support the field.

• However, a number of additional actions are needed to help bring safe and effective regenerative cell therapies to patients in need. They include:
 — Gaining consensus on and driving adoption of both standards and best practices to support the development, manufacturing, and delivery of regenerative cell therapies.
 — Developing and launching a national outcomes database or registry of regenerative cell therapies, to enable the capture of information about the cells and understand the correlation of cell characteristics with clinical outcomes.
 — Significantly expanding workforce development initiatives, including those focused on technical and community colleges, to build capacity and develop a skilled, technical workforce for this growing field.
 — As noted by private sector panelists, increasing capacity within the FDA's Center for Biologics Evaluation and Research (CBER) to support additional education, dialogue, and technical assistance for academic and research institutions, industry innovators, and practitioners, to support understanding of and compliance with new FDA regulations, as well as continued enforcement activities against those clinics that are causing patient harm.
 — As noted by private sector panelists, increasing and sustaining funding for regenerative cell therapy research and clinical trials, to advance the science and the field.

Detailed insights shared during the Congressional briefing are included in this report. Visit http://allianceforcelltherapynow.org/events/ for speaker slides, bios, and a webcast of the event.
Regenerative cell therapies represent the next generation of groundbreaking treatments that are showing great promise in cardiology, neurology, oncology, orthopedics, osteoarthritis, and engineering of organs to support patients in need. Several well-designed clinical trials are now being conducted under FDA-approved IND protocols.

Leading researchers shared a summary of research that has been performed or is underway during a panel discussion moderated by Fred Sanfilippo, MD, PhD, Professor, Health Policy and Management, Rollins School of Public Health, Emory University; Director, Emory-Georgia Tech Healthcare Innovation Program; and Medical Director, The Marcus Foundation. The Marcus Foundation has provided more than $100 million in grants to date, to support clinical trials in regenerative cell therapy.

Anthony Atala, MD, G. Link Professor and Director of the Wake Forest Institute for Regenerative Medicine, described several studies, including those related to the use of the patient’s own tissue-specific cells for the treatment of shoulder rotator cuff injuries and kidney disease, as well as for the engineering of urethras, blood vessels, and bladders implanted in patients. Dr. Atala also described activities of the Regenerative Medicine Innovation Manufacturing Consortium, a private-public partnership of industry, government, and academia, with the goal of accelerating the production of cell-based therapies for patients by improving and standardizing manufacturing technologies, such as bioreactors, cell media, and bio-inks for 3D printing.

Joanne Kurtzberg, MD, who serves as the Jerome Harris Distinguished Professor of Pediatrics, Professor of Pathology, Director of the Marcus Center for Cellular Cures, Director of the Pediatric Blood and Marrow Transplant Program, Director of the Carolinas Cord Blood Bank, and Co-Director of the Stem Cell Transplant Laboratory at Duke University Medical Center, described promising clinical trials underway to assess the use of umbilical cord blood cells and cord tissue-derived mesenchymal stem cells (MSCs) to treat children with hypoxic-ischemic encephalopathy (HIE), cerebral palsy, and autism spectrum disorder, as well as the use of cord blood cells to treat adults with stroke.

David Pearce, PhD, President of Innovation and Research, Sanford Health; Scientist, Pediatrics and Rare Diseases Group; and Professor, Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, described clinical trials for cell therapy treatments for patients with osteoarthritis of the wrist, facet joint osteoarthritis, and partial thickness rotator cuff tears. Dr. Pearce also described a multi-center trial of stem cell therapy for osteoarthritis in the knee, involving Sanford Health, Emory University, Duke University, and the Andrews Research Education Foundation, which is comparing outcomes of cell therapies, including bone marrow aspirate concentrate, umbilical cord-derived MSCs, and adipose-derived stem cells, against corticosteroid injection.

Panelists described several actions to support the advancement of both safe and effective cell therapies for patients, including the need for additional funding for the NIH for regenerative medicine research and clinical trials support, expanded patient access to therapies deemed to be both safe and effective, increased regulatory support and assistance from the FDA, strategies to improve and reduce the costs of manufacturing, and workforce development initiatives.
Krishnendu Roy, PhD, who serves as the Robert A. Milton Chair; Director, NSF Engineering Research Center for Cell Manufacturing Technologies; Director, Marcus Center for Cell-Therapy Characterization and Manufacturing; Technical Lead, National Cell Manufacturing Consortium; and Director, Center for ImmunoEngineering, Georgia Institute of Technology, described both the challenges and the promising work underway to assist with reproducibly manufacturing living cells at large-scale, with consistent, predictive, and therapeutic quality, at low cost. Dr. Roy highlighted several key challenges associated with this goal, such as the need for greater quality control and assurance, including the identification of critical quality attributes, greater knowledge of the mechanisms of action, development of critical process parameters, and standards and best practices. He also highlighted the importance of a trained workforce, emphasizing the need for a greater number of technical college graduates—who represent the backbone of the manufacturing workforce—as well as individuals with undergraduate and graduate degrees.

Dr. Roy also highlighted several public-private efforts designed to advance cell manufacturing, including the National Science Foundation-funded Engineering Research Center for Cell Manufacturing Technologies (CMaT), an eight university national consortium between academia, industry, and the government and the development of a national roadmap, Achieving Large-Scale, Cost-Effective, Reproducible Manufacturing of High-Quality Cells by the National Cell Manufacturing Consortium with funding support from the National Institute of Standards and Technology (NIST) Advanced Manufacturing Technology Consortia program.
The 21st Century Cures Act contained several provisions to make safe and effective regenerative cellular therapies available to patients, including extending FDA expedited programs to include regenerative therapies and providing funds for research through the NIH. A number of activities are now underway within these and other federal agencies to carry out the provisions of the 21st Century Cures Act.

The FDA is also taking several important steps to address the stem cell clinics that have caused patient harm or made questionable claims, taking advantage of vulnerable patients and casting a negative light on this promising science and industry.

Janet Marchibroda, President of Alliance for Cell Therapy Now, moderated a panel discussion highlighting these issues, as well as the leadership and activities of the FDA and the NIH.

Bernard Siegel, Executive Director of the Regenerative Medicine Foundation offered examples of stem cell clinics direct-to-consumer advertising in southern Florida, and the need for both consumer education and continued efforts by the FDA to address bad actors. Ms. Marchibroda, Mr. Siegel, private sector panelists, and several meeting participants expressed support for FDA's increased efforts to enforce its regulations and protect patients from unsafe therapies, as well as the need for additional resources to help CBER carry out its public mission.

Mr. Siegel also discussed the need for workforce development initiatives, particularly those housed within technical programs and community colleges, to provide a much-needed, skilled workforce for this growing field. He also called for the capture and sharing of data through a federally-funded outcomes database.

Amy Patterson, MD, Chief Science Advisor and Director of Scientific Research Programs, Policy, and Strategic Initiatives, Immediate Office of the Director, National Heart, Lung, and Blood Institute, National Institutes of Health, highlighted her agency's mission, which is to advance the health of all people through biomedical research, as well as NIH's principles, including those related to scientific rigor, reproducibility, integrity, and the broad sharing of research data and materials. During her remarks, Dr. Patterson highlighted the NIH's recognition of the promise of regenerative medicine, citing that it is one of the most exciting fields in biomedical research, because it aims to not simply treat symptoms, but to actually replace and restore cells and tissues damaged by injury, disease, or aging.

Like other speakers, Dr. Patterson spoke of the importance of rigorous science and the avoidance of hype, stating that marketing of untested, unapproved products and harms to some individuals using untested products could erode public trust.
Dr. Patterson highlighted a number of scientific barriers related to regenerative medicine which emerged from a multi-sector workshop co-hosted by the NIH and the FDA:

- Need for regulatory support to enable development of robust IND/investigational device exemption (IDE) applications;
- Challenges related to transitioning from laboratory- to clinical-grade manufacturing of cell products;
- Limited understanding of the identity and nature of regenerative medicine cell products used in the clinic; and
- Limited availability of standardized data for analysis across studies, which hampers advancement of the field.

Dr. Patterson emphasized that in-depth cell characterization underpins the research and development pathway toward treatment, and that such characterization should include specifications, critical quality attributes, and deep fingerprinting.

Dr. Patterson also shared NIH’s progress in supporting regenerative medicine, including establishment of the Regenerative Medicine Innovation Project, which funds late-stage pre-clinical and IND/IDE-enabling studies, resources to help investigators address critical challenges, and the development of an innovative model to support research. It is important to note that funding for this work—which was authorized by the 21st Century Cures Act—runs out after FY 2020.

Dr. Patterson summarized several key factors that would help realize the promise of regenerative medicine, including:

- Rigorous science and regulatory compliance to advance the field and promote public trust;
- Assisting investigators in developing clinical-grade cell products to optimize the ability to manufacture cells that will produce the intended clinical effects;
- Standardizing and collecting in-depth cell characterization data and individual level participant data to enable deeper understanding of the composition and function of stem cell products and correlation of cell characteristics with clinical outcomes; and
- Use of common vocabularies and a cloud-based platform for sharing, integration, and analysis of product and clinical data to enable analyses across studies.

Dr. Patterson highlighted an NIH-FDA-NIST effort—the Regenerative Medicine Innovation Catalyst—which will help advance progress in these areas. This multi-agency collaboration, to be conducted in consultation with the regenerative medicine community, will establish a network of academic and private sector entities that will conduct the following, serving as pilot for a new model to support and conduct regenerative medicine clinical research:

- Provide manufacturing support and regulatory “coaching”;
- Apply advanced technologies for in-depth cell characterization;
- Develop data standards and common data elements; and
- Promote collection and sharing of standardized cell product and clinical outcomes data.
Dr. Peter Marks, Director of the Center for Biologics Evaluation and Research at the FDA began his remarks by sharing the FDA’s commitment to advance the development of safe and effective cellular therapies to help address unmet medical needs, noting that this could be accomplished by:

- Encouraging sponsor interactions with the agency;
- Deployment of all applicable development programs; and
- Appropriate action when needed to protect patients.

Dr. Marks described the two-tier regulatory structure for human cells, tissues, or cellular or tissue-based products (HCT/Ps):

- **Section 361 HCT/Ps**
 These HCT/Ps contain or consist of human cells or tissues that are intended for implantation, transplantation, infusion, or transfer into a human recipient (§ 1271.3(d)). Examples include skin, MSCs, and hematopoietic progenitor cells from cord blood. These products are regulated solely under authority of section 361, subject to “Tissue Regulations” (21 CFR Part 1271), and premarket review and approval are not required.

- **Section 351 HCT/Ps**
 These HCT/Ps are regulated under the authority of section 361 and section 351 of Public Health Service Act and/or the Federal Food, Drug, & Cosmetic Act. A license is needed to distribute such products in interstate commerce; such products must be safe, pure, potent; and FDA has suspension revocation power and recall authority.

According to the FDA, to be regulated solely under section 361 of the Public Health Service Act, HCT/Ps must meet the following criteria (21 CFR Part 1271.10(a)):

- Minimally manipulated;
- Intended for homologous use only;
- Not combined with another article (with some exceptions); AND
- Either:
 - Does not have a systemic effect and is not dependent upon the metabolic activity of living cells for its primary function; or
 - Has a systemic effect or is dependent upon the metabolic activity of living cells for its primary function, and is for autologous, 1st or 2nd degree blood relative, or reproductive use.

“...we’re very committed here to helping people move this area forward...it’s a tremendously exciting area. But it will only come to benefit people to the extent that we put rigor into the science with which we develop these products.”

Peter Marks, MD, PhD
Food and Drug Administration
The FDA has released a suite of regenerative medicine final guidance documents—summarized below—which are designed to clarify existing regulations to make it simpler for sponsors to determine if they need to obtain premarket authorization for their products and to expedite the development and approval of safe and effective innovative regenerative medicine therapies and associated devices.

- Same Surgical Procedure Exception under 21 CFR 1271.15(b): Questions and Answers Regarding the Scope of the Exception;
- Regulatory Considerations for Human Cell, Tissues, and Cellular and Tissue-Based Products: Minimal Manipulation and Homologous Use;
- Evaluation of Devices Used with Regenerative Medicine Advanced Therapies; and
- Expedited Programs for Regenerative Medicine Therapies for Serious Conditions.

To give manufacturers time to determine if they need to submit an IND or marketing application in light of such guidance and, if such an application is needed, to prepare the IND or marketing application, FDA publicized a 36-month period of enforcement discretion which ends on November 20, 2020, for products based on a determination of the risk to public health.

In response to the 21st Century Cures Act, the FDA created the Regenerative Medicine Advanced Therapy Designation (RMAT). The RMAT designation is applicable to products addressing serious conditions for which preliminary clinical evidence indicates the potential to address unmet medical needs. Designated products are eligible as appropriate for priority review and accelerated approval.

Dr. Marks shared information about the number of RMAT designations granted as of August 31, 2019, stating that of 115 requests, 44 were granted the RMAT designation, 61 were denied, 4 were withdrawn, and 6 are still pending.

Dr. Marks also shared information about two programs designed to provide regulatory assistance.

- The Initial Targeted Engagement for Regulatory Advice on CBER Products (INTERACT) Program, which encourages early FDA interaction with sponsors and replaces the pre-pre-IND meeting process across CBER regarding preclinical, manufacturing and, clinical development plans.
- The Tissue Reference Group Rapid Inquiry Program (TRIP), which helps manufacturers of HCT/Ps obtain a rapid, preliminary, informal, non-binding assessment from FDA regarding how specific HCT/Ps are regulated.

In closing, Dr. Marks reiterated the FDA’s commitment to advance this “tremendously exciting area.” According to Dr. Marks, regenerative cell therapies will only come to benefit people to the extent that “we put rigor into the science to develop such products.”

Acknowledgements

The Alliance for Cell Therapy Now and its leadership acknowledge and express their gratitude to Senator David Perdue, who made this Congressional briefing possible.

The Alliance for Cell Therapy Now also thanks the many speakers who participated in the event, and the Regenerative Medicine Foundation and the Cord Blood Association for their collaboration on this event.

Alliance for Cell Therapy Now
1350 I Street, N.W., Suite 800
Washington, DC 20005
www.allianceforcelltherapynow.org